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Abstract. We investigate a model of interacting clusters which compete for growth. For a finite assembly of
coupled clusters, the largest one always wins, so that all but this one die out in a finite time. This scenario

of ‘survival of the biggest’ still holds in the mean-field limit, where the model exhibits glassy dynamics,
with two well separated time scales, corresponding to individual and collective behaviour. The survival
probability of a cluster eventually falls off according to the universal law (ln t)−1/2. Beyond mean field, the

dynamics exhibits both aging and metastability, with a finite fraction of the clusters surviving forever and
forming a non-trivial spatial pattern.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.54.+r Pattern selection; pattern

formation – 89.75.-k Complex systems – 64.60.My Metastable phases

1 Introduction

Non-equilibrium dynamics can lead to counter-intuitive
situations. One is used, for example, to the premise
of equilibration: in a system with unequally distributed
masses, the effect of most ‘physical’ interactions would
be to bring the system to an equilibrium state where
masses are distributed equally. This equilibration princi-
ple is known to fail in some physical instances, mostly in
the presence of long-range forces, the prototypical exam-
ple being gravitational forces. In fact, as is well known,
the effect of gravitation is to amplify forever the contrasts
in mass distribution throughout the Universe [1].

In this work, we interest ourselves in an extreme case of
disequilibration. The model investigated below deals with
immobile interacting clusters which compete for growth.
Although it arose in an astrophysical context, that of mass
accretion by black holes coupled by the radiation field in
a brane world [2,3], its emergent features are relevant to a
far wider range of problems. The present model is strongly
out-of-equilibrium and it obeys no mass conservation law.
A variety of transient behaviour is therefore possible: for
example, two interacting clusters can both decay, or both
grow before one of them dies out. At late stages, the model
follows the survival of the biggest scenario, an example of
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Darwinism in a physical system. In the mean-field geom-
etry, the largest cluster generically wins out over all the
rest; in finite dimensions, one has the possibility that in-
finitely many clusters survive and grow forever, provided
each of them is isolated, in a sense that will be clearer
later on. This is actually quite meaningful in the origi-
nal astrophysical context, since it could, with appropriate
modifications, be adopted to model the scenario of primor-
dial black holes evolving to a size such that they survive
in the present era.

The present model, defined in Section 2, deals with
an assembly of pointlike, immobile clusters, which are en-
tirely characterised by their masses. Cluster masses evolve
according to coupled deterministic, non-linear first-order
equations. We address a medley of situations ranging from
finite assemblies of clusters, to the thermodynamic limit,
examined both in the mean-field geometry and on a lattice
with nearest-neighbour interactions. Section 3 describes
the dynamical behaviour of a single isolated cluster: a
large enough cluster, whose initial mass exceeds some
threshold, grows forever, whereas a smaller one evapo-
rates and disappears in a finite time. Section 4 concerns
our findings on two interacting clusters, and more gener-
ally finitely many coupled clusters: the generic scenario
is then the survival of the biggest, so that the largest
cluster wins out over all the rest. The mean-field regime
of a large collection of weakly coupled clusters is investi-
gated in Section 5. The system exhibits aging and glassy
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dynamics, involving two well-separated time scales. The
cluster survival probability decays according to the uni-
versal law (ln t)−1/2. In Section 6, we examine the model
with nearest-neighbour interactions in finite dimension:
the dynamics now exhibits both aging and metastability.
The finite fraction of survivors, i.e., clusters which survive
and grow forever, builds a non-trivial spatial pattern. In
the Discussion (Sect. 7), we put our results in perspective
with other growth models.

2 The model

The model investigated in this work is a direct generali-
sation of that derived in [2,3]. Consider n pointlike, im-
mobile clusters, which are entirely characterised by their
time-dependent masses mi(t) for i = 1, . . . , n. The cluster
masses evolve according to the following coupled deter-
ministic, first-order equations:

dmi

dt
=


α

t
− 1

t1/2

∑
j

gij
dmj

dt


mi − 1

mi
. (2.1)

These dynamical equations were originally written to
model the kinetics of black hole growth in a radiation
fluid [2,3]. In that context, they only hold after some
microscopic initial time t0. The positive (gain) term in
the right-hand side of (2.1) represents mass accretion by
the black hole from the surrounding fluid. The accretion
rate in the large parenthesis is the sum of the free rate
for an isolated black hole, proportional to the parame-
ter α > 1/2, and of the rate induced by all the other black
holes via the surrounding fluid. The coupling gij between
black holes i and j is proportional to the inverse square
distance d2

ij(t0) between them at the initial time t0. The
negative (loss) term in the right-hand side of (2.1) repre-
sents evaporation due to Hawking radiation.

In this paper, the dynamical equations (2.1), or equiv-
alently (2.4), are now seen as representing competitive
cluster growth. The functional form of the original equa-
tions derived in [3] is kept unchanged for definiteness. The
symmetric matrix of couplings gij reflects the underlying
geometry. Succeeding sections will deal with a raft of sce-
narios of ever-increasing complexity, ranging from the dy-
namics of two coupled clusters to that of infinitely many.

It turns out to be convenient to switch from physical
time t to reduced (logarithmic) time

s = ln
t

t0
, (2.2)

so that the initial time t0 is mapped onto the origin s = 0.
Furthermore, we introduce for convenience the reduced
masses and square masses:

xi =
mi

t1/2
, yi = x2

i =
m2

i

t
. (2.3)

The dynamical equations (2.1) then become the following
autonomous equations

dxi

ds
≡ x′

i =


2α − 1

2
−
∑

j

gij

(xj

2
+ x′

j

)xi− 1
xi

(2.4)

for the reduced masses xi(s), which exhibit no explicit
dependence on the reduced time s [3]. Throughout the
following, accents will denote differentiation with respect
to the reduced time s. It will also be assumed that the
couplings gij are small enough, so that

det (δij + gij xi)i,j=1,...,n > 0. (2.5)

When this inequality holds, the time derivatives x′
i can

be solved explicitly from the implicit dynamical equa-
tions (2.4), so that the dynamics is regular. Whenever the
regularity condition (2.5) holds at s = 0, it turns out to
be preserved by the dynamics.

3 One isolated cluster

The simplest situation is that of a single isolated cluster
of mass m(t). The dynamical equation (2.1) reads

dm

dt
=

αm

t
− 1

m
. (3.1)

The dynamical equation (2.4) simplify to the following
ones for the reduced mass x(s) and square mass y(s):

x′ =
2α − 1

2
x − 1

x
, (3.2)

y′ = (2α − 1)y − 2. (3.3)

Equation (3.3) is the easier to solve. It yields at once

y(s) = y� + (y0 − y�)e(2α−1)s, (3.4)

where m0 = m(t0) and y0 = m2
0/t0 are the initial values

of m(t) and y(t), respectively, whereas

y� =
2

2α − 1
(3.5)

is the unstable fixed point of (3.3).
Returning to physical variables, (3.4) reads

m(t)2 = y�t + (m2
0 − y�t0)

(
t

t0

)2α

. (3.6)

This implies that for all α > 1/2, we have two kinds of
behaviour:

– Large clusters, whose initial mass is such that y0 > y�,
i.e., m0 is larger than the mass threshold

m� = (y�t0)1/2 =
(

2t0
2α − 1

)1/2

, (3.7)
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are survivors: they survive and keep on growing for-
ever. Equation (3.6) reads alternatively

m(t)2 = m2
�

t

t0
+ (m2

0 − m2
�)
(

t

t0

)2α

. (3.8)

The second term is the leading one at late times, for
all α > 1/2.

– Small clusters, whose initial mass is below the thresh-
old: y0 < y�, i.e., m0 < m�, evaporate and die out in
a finite reduced time,

s(y0) =
1

2α − 1
ln

y�

y� − y0
, (3.9)

which diverges logarithmically as the mass thresh-
old m� is approached from below. The corresponding
physical time,

t(y0) = t0

(
y�

y� − y0

)1/(2α−1)

, (3.10)

diverges as a power law.

Even in this simple case of independent clusters, we
get an indication of a Darwinian scenario (where size, i.e.,
mass replaces fitness): the biggest clusters survive, while
the smaller ones die out.

Consider now a very large assembly of isolated, i.e.,
non-interacting, clusters, characterised by the (continu-
ous) probability distribution function P (y0) of their initial
square masses y0. One of the quantities of most interest
is the survival probability S(s), defined as the fraction of
the clusters which have survived up to reduced time s.
Surviving clusters are exactly those whose initial square
mass obeys y0 > Y (s), where the time-dependent thresh-
old Y (s) is the inverse of s(y0) introduced in (3.9):

Y (s) =
(
1 − e−(2α−1)s

)
y�. (3.11)

The survival probability at time s reads therefore

S(s) =
∫ ∞

Y (s)

P (y0) dy0. (3.12)

The limit survival probability1 S(1) is defined as the
fraction of survivors, i.e., clusters which survive and grow
forever. These are the clusters whose initial mass is above
the threshold y� introduced in (3.7). We thus obtain

S(1) = lim
s→∞S(s) =

∫ ∞

y�

P (y0) dy0. (3.13)

For simplicity, we shall often consider in the following
an exponential distribution of initial square masses:

P (y0) = µ e−µy0 . (3.14)

The result (3.13) then reads

S(1) = e−µy�

. (3.15)

1 The subscript (1) recalls that this result holds for isolated
clusters.

4 Two interacting clusters

Until now, we have considered only independent clusters:
these survive or not, depending on their initial masses.
We now turn to the more interesting situation of inter-
acting clusters. The form of the interactions was derived
in earlier work [3] and is such that clusters could ‘feed
on’ each other: thus, smaller clusters disappear faster as
if they were swallowed by the larger ones. In this section,
we explore the details of the simplest possible case, that
of two interacting clusters with masses m1(t) and m2(t),
and interaction strength g = g12 = g21.

We look successively at the special case of equal masses
(Sect. 4.1) and at the generic case of unequal masses
(Sect. 4.2). Only in the first case are the two masses able
to survive forever, growing more slowly than if they had
been alone. In the second case, the bigger cluster swallows
the smaller one, generically.

The dynamical equations (2.4) read

x′
1 =

(
2α − 1

2
− g

(x2

2
+ x′

2

))
x1 − 1

x1
,

x′
2 =

(
2α − 1

2
− g

(x1

2
+ x′

1

))
x2 − 1

x2
. (4.1)

Solving these equations for the time derivatives, we obtain

x′
1 =

(2α − 1)x2
1x2 − 2x2 + 2g(1 − αx2

2)x
2
1 + g2x3

1x
2
2

2x1x2(1 − g2x1x2)
,

x′
2 =

(2α − 1)x1x
2
2 − 2x1 + 2g(1 − αx2

1)x
2
2 + g2x2

1x
3
2

2x1x2(1 − g2x1x2)
.

(4.2)

In the generic situation of two unequal masses, the above
dynamical equations already illustrate the full complexity
of the problem. The regularity condition (2.5), which reads

1 − g2x1x2 > 0 (4.3)

in the case of two clusters, is needed for the denominators
not to vanish.

4.1 Equal masses

The main results of this section can be explained physi-
cally in the following way: since the interactions cause each
mass to ‘feed on’ the other, overly strong interactions will
lead to a strongly depletive effect on both, as a result of
which neither survives. On the other hand, a weakly in-
teracting pair of equal mass clusters can, provided their
masses are above a threshold, survive in gentle symbiosis;
both depletion and accretion keep occurring at compara-
ble rates, and the pair survive forever.

Consider now two clusters whose masses are equal at
the initial time t0. This symmetry is clearly preserved by
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the dynamics. Let x(s) be the common value of their re-
duced mass. Equations (4.2) simplify to

x′ =
(2α − 1)x2 − 2 − gx3

2x(1 + gx)
. (4.4)

The fixed points of the above dynamical equation,
given by

(2α − 1)x2 − 2 − gx3 = 0, (4.5)

dictate the qualitative features of the dynamics. There is
a critical value of the coupling,

gc =
(

2(2α − 1)3

27

)1/2

, (4.6)

which separates two kinds of behaviour:

– For a large enough coupling (g > gc), (4.5) has no
real positive root, leading to the absence of a physical
fixed point. The reduced mass x(s) of both clusters
decreases monotonically until they simultaneously die
out in a finite reduced time.

– For a small enough coupling (g < gc), (4.5) has three
real roots, two of which are positive and correspond to
physical fixed points:

y
1/2
� < x(1) (unstable) < (3y�)1/2 < x(2) (stable).

(4.7)
Small clusters, such that x0 < x(1), are attracted by
x = 0, so that both disappear in a finite time. Large
clusters, such that x0 > x(1), are attracted by x(2):
those pairs of clusters are survivors, and their common
mass grows as

m(t) ≈ x(2)t
1/2. (4.8)

Note that this growth rate is slower than that of an
isolated cluster [see (3.6)].

In other words, small masses, no matter what the
coupling strength, die out in a finite time. For large re-
duced masses, the role of the coupling strength matters.
For g < gc, those larger than x(1) survive forever, and grow
more slowly than if they had been isolated; for g > gc, all
die eventually.

These results match those of Section 3 in the limit of a
vanishingly small coupling. The unstable fixed point has
a finite limit x(1) → y

1/2
� , whereas the stable one diverges

as x(2) ≈ (2α − 1)/g. We recall from Section 3 that y�

is the threshold above which independent clusters survive
forever. The unstable fixed point x(1), which likewise sep-
arates dying from surviving clusters, thus reduces to y� in
the g → 0 limit, as it should. The main new element with
respect to the non-interacting limit is the existence of the
stable fixed point x(2). However, its effect is to attract all
masses above x(1) to itself, so that here, too, the effective
behaviour is unchanged with respect to the noninteracting
case; masses above x(1) survive forever.

Fig. 1. Phase diagram of the two-cluster problem in the α–g
plane. Full line: critical coupling g = gc(α) of (4.6). Dashed

line: g = glim(α) of (4.11). Phase I: no real positive fixed point.
Phase II: two fixed points, both obeying (4.9): x(1) < x(2) <
xlim. Phase III: two fixed points, only x(1) obeys (4.9): x(1) <
xlim < x(2). Phase IV: two fixed points, none obeying (4.9):

xlim < x(1) < x(2). Full symbol: quadruple point (α = 5/4,
g = 1/2): x(1) = x(2) = xlim = 2.

Finally, it is worth coming back to the regularity con-
dition (4.3). In the present situation of two equal masses,
this condition reads

x < xlim, xlim =
1
g
. (4.9)

The limiting value xlim plays no special role in the dynam-
ics of two clusters with equal masses. It will however play
an important part in the transient dynamical behaviour
of two unequal masses, to be studied in Section 4.2. It
is therefore worth investigating the fate of xlim. Equa-
tion (4.4) implies

x′|x=xlim =
α − 1 − g2

2g
. (4.10)

This expression singles out the following value of the cou-
pling strength:

glim = (α − 1)1/2 (α > 1). (4.11)

For g < glim, the right-hand side of (4.10) is positive,
so that xlim flows toward larger values of x. Conversely,
for g > glim, the right-hand side of (4.10) is negative, so
that xlim flows toward smaller values of x. We present
in Figure 1, for further reference, the phase diagram of
the two-cluster problem in the α–g plane. Four different
phases can be defined (see caption), according to the num-
ber of real positive fixed points, and to the number of
those obeying the condition (4.9). The phase boundaries
are determined by equations (4.6) and (4.11).

4.2 Unequal masses

In the general case where the clusters have unequal
masses, the role of the interactions is inherently dise-
quilibrating: mass differences, however small initially, get
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Fig. 2. Typical trajectories in the g x1–g x2 plane, for one choice of the parameters α and g in each of the four phases
shown in Figure 1. Full lines: a few trajectories with an initial mass difference ε = ±10−2. Dashed line: limit of the regularity
condition (4.3), i.e., gx1 · gx2 = 1. Full symbols: fixed points.

rapidly amplified, leading to the generic scenario of the
survival of the biggest. We shall investigate successively
three stages in the dynamics of two clusters with slightly
unequal masses.

Early stage: linear stability analysis

Consider first the early stage of the dynamics for two clus-
ters with a small mass difference. Setting

x1(s) = x(s) + ε(s), x2(s) = x(s) − ε(s), (4.12)

to first order in the difference ε(s), the mean reduced
mass x(s) obeys (4.4), while the difference itself obeys
the linear equation

ε′(s) = Λ(x(s)) ε(s), (4.13)

where the instantaneous Lyapunov exponent Λ(x) reads

Λ(x) = Λ0(x) +
g(2 + gx + αgx3)

x(1 − g2x2)
,

Λ0(x) =
2α − 1

2
+

1
x2

. (4.14)

The full Lyapunov exponent Λ(x) of two interacting clus-
ters is therefore larger than the Lyapunov exponent Λ0(x)
in the absence of coupling, which is in turn larger than the
constant (2α−1)/2. As underlined above, interactions thus
enhance disequilibration. In any case, irrespective of the
mean initial mass and of the coupling, any small initial
mass difference diverges exponentially in the early stages
of the dynamics. In particular, the fixed point x(2) of Sec-
tion 4.1, which is stable against a symmetric perturbation
of the form δx1 = δx2, is always linearly unstable against
an asymmetric perturbation of the form δx1 = −δx2 = ε.

Intermediate stage: transient behaviour in the various phases

Later stages of the dynamics cannot be described in closed
form, because of the non-linearity of (4.2). The detailed
transient time dependence of both masses depends on the
location of the parameters α and g in the phase diagram
of Figure 1, especially when the initial mass difference is
small.

These features are illustrated in Figure 2, showing
the shape of typical trajectories in the g x1−g x2 plane.
The dashed line shows the limit of the regularity condi-
tion (4.3), so that allowed pairs of reduced masses are
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below that line. Each full line shows a trajectory start-
ing with a small mass difference ε = ±10−2. The mass
difference then grows monotonically, until the trajectory
hits either of the co-ordinate axes in some finite time s1,
when the lighter mass disappears. Each panel corresponds
to a typical choice of α and g in each of the four phases.
Phases I and IV are very similar: the lighter mass always
decreases monotonically, whereas the larger one decreases
in a first stage. If the larger mass is large enough, it may
then start increasing before the lighter dies out. Phases II
and III are also similar: both masses may increase in a
first stage if their difference is small enough.

Late stage: survival of the biggest

The values of the parameters α and g become asymp-
totically irrelevant in the late stages of the dynamical
evolution. Indeed, as illustrated above, any trajectory
eventually hits either co-ordinate axis. There is therefore
one single generic scenario for two clusters with unequal
initial masses, i.e., that of survival of the biggest:

– The smaller one dies out in a finite time s1.
– The larger one then evolves according to the results

of Section 3. Depending on the value of its mass at
reduced time s1, it may either also disappear in a fi-
nite time (for y(s1) < y�), or survive and grow forever
(for y(s1) > y�).

The above results still hold qualitatively for any finite
number n ≥ 2 of fully interacting clusters (all couplings
are non-zero). In the generic situation of unequal masses,
the scenario of survival of the biggest applies: the n − 1
smaller clusters die out one after the other, while only the
largest one may become a survivor.

5 Mean-field limit

Having explored the behaviour of finitely many interact-
ing clusters, we now turn our attention to collective be-
haviour in the thermodynamical limit of an infinite as-
sembly of interacting clusters. In the present section, we
focus on the mean-field regime of long-range interactions.
The main feature of mean-field dynamics is again that all
the clusters eventually die out, except the largest one. The
clusters which survive up to time s are those whose initial
reduced square mass exceeds some time-dependent mass
threshold Y (s), to be determined below. The general case
is necessarily somewhat formal (Sect. 5.1). If, however, one
considers the regime of weak interactions, the formalism
simplifies considerably (Sect. 5.2).

5.1 General formalism

We consider the mean-field limit of a large assembly of
clusters (n � 1), assuming that all the couplings gij have

the same value g. We perform the usual rescaling of the
interaction strength in mean-field models:

g =
g

n
. (5.1)

The problem simplifies drastically in the thermody-
namic limit, defined as usual as the n → ∞ limit at
fixed g. In this limit, the coupling strength of any clus-
ter to its whole environment, measured by g, remains of
order unity, whereas the strength of the coupling between
any two different clusters, measured by g, falls off as 1/n.

In this thermodynamic limit, (2.4) implies the follow-
ing dynamical equation

y′(s) = γ(s)y(s) − 2 (5.2)

for the reduced square mass y(s) of any of the clusters.
We have introduced the notation

γ(s) = 2α − 1 − g (M(s) + 2M ′(s)) (5.3)

for the effective growth rate of the square mass y(s), where

M(s) = 〈x〉s = 〈y1/2〉s = lim
n→∞

1
n

∑
i

yi(s)1/2 (5.4)

is the mean reduced mass of the clusters at reduced time s.
Despite its apparent simplicity, (5.2) is non-trivial, be-

cause of its self-consistency: its right-hand-side indeed in-
volves γ(s), and therefore M(s), and therefore the solution
of (5.2) itself. This self-consistent problem can be solved
formally as follows. First, we have on differentiating (5.4)

M ′(s) =
γ(s)
2

M(s) − N(s), (5.5)

with

N(s) = 〈y−1/2〉s = lim
n→∞

1
n

∑
i:yi(s)>0

yi(s)−1/2, (5.6)

where only non-zero values of yi, corresponding to clus-
ters i which survive at time s, are involved in the sum.
The effective rate γ(s) can therefore be solved from (5.3):

γ(s) =
2α − 1 + g (2N(s) − M(s))

1 + gM(s)
. (5.7)

On the other hand, a formal integration of (5.2) yields

y(s) = G(s) (y0 − Y (s)), (5.8)

with

G(s) = exp
(∫ s

0

γ(u) du

)
, Y (s) = 2

∫ s

0

du

G(u)
,

(5.9)
so that

G(s) =
2

Y ′(s)
, γ(s) = −Y ′′(s)

Y ′(s)
. (5.10)
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These steps lead to the following picture of the mean-
field dynamics. For a given initial value y0 = y(0) of the
reduced square mass, the solution (5.8) holds only as long
as y(s) is positive, or, equivalently, y0 > Y (s). Hence the
smaller clusters, with initial square masses y0 < Y (s),
have already disappeared at reduced time s, while larger
ones, such that y0 > Y (s), have their square masses
shifted and dilated from y0 to y(s), according to (5.8).

This has strong echoes of the case of many non-
interacting clusters. Recall that there existed a mass
threshold, also called Y (s) in (3.11), below which all par-
ticles had died at time s, and above which they survived.
The quantity Y (s) in (5.8) above generalises this thresh-
old in the presence of a mean-field coupling. Now, clusters
below this threshold die as before, while the mass of a clus-
ter grows, as a result of interactions, from y0 to y(s). In
the absence of coupling (g = 0), the present Y (s) reduces
to that obtained in (3.11).

The above formalism allows us, provided the continu-
ous probability distribution of initial square masses P (y0)
is known, to express all the quantities of interest in terms
of a single (so far unknown) dynamical quantity, the
threshold Y (s). In terms of this, M(s) and N(s) read

M(s) = G(s)1/2

∫ ∞

Y (s)

(y0 − Y (s))1/2P (y0) dy0, (5.11)

N(s) = G(s)−1/2

∫ ∞

Y (s)

(y0 − Y (s))−1/2P (y0) dy0. (5.12)

Equation (5.7) then provides a self-consistent equation
for the unknown quantity Y (s), as it only involves Y (s)
itself and its first and second derivatives. Of course, the re-
sulting non-linear integro-differential equation cannot be
solved in closed form in general.

To recapitulate, the program for the mean-field solu-
tion of the dynamics of n � 1 clusters is the following:
Equation (5.8) gives the growth law of any cluster mass
in terms of the time-dependent mass threshold Y (s). Only
clusters above this threshold survive at reduced time s, as
the rest have died. The calculation of Y (s) can be done
self-consistently, at least in principle, from (5.7). Quanti-
ties of interest, such as the mean mass of surviving clusters
at time s, can then be calculated via (5.11) and similar
expressions.

The definition of the survival probability S(s) is unal-
tered by the presence of interactions, and is still given by
equation (3.12), i.e.,

S(s) =
∫ ∞

Y (s)

P (y0) dy0. (5.13)

The mean reduced mass of the surviving clusters reads

〈〈x〉〉s = 〈〈y1/2〉〉s =
M(s)
S(s)

, (5.14)

where 〈〈· · · 〉〉s denotes the normalised mean over the clus-
ters surviving at reduced time s. In general, average quan-
tities computed over all clusters, dead and alive, must be

renormalised by S(s) in order to get an appropriately nor-
malised average over surviving clusters at any time s.

5.2 Weak-coupling regime

The results of Section 5.1 hold for arbitrary values of g,
and their formal nature admits of no further simplifica-
tion. However, a much greater transparency is achieved in
the regime where the rescaled coupling g is small.

In this regime, the dynamics consists of two successive
stages. In Stage I, the clusters behave as if they were iso-
lated, i.e., their masses evolve according to the results of
Section 3. This fast stage of the dynamics therefore corre-
sponds to individual behaviour. The only surviving clus-
ters after Stage I are those whose initial masses exceed
the threshold (3.7). The effect of interactions sets in at
Stage II. This slow stage of the dynamics corresponds to
collective behaviour. All but the largest cluster eventually
die out during this stage.

The weakly interacting mean-field regime of our model
of interacting clusters therefore exhibits characteristic fea-
tures of glassy systems [4]. These aging phenomena orig-
inate in the presence of two well-separated time scales of
fast and slow dynamics, with a ratio of respective time
scales growing as 1/g2. Another striking feature of our
model is the universality of the main asymptotic results in
Stage II dynamics: the survival probability falls off gener-
ically as (ln t)−1/2, whereas the mean square mass of sur-
vivors grows as t ln t. As is well known [4], such logarithmic
behaviour is another telltale sign of glassy dynamics. We
describe all of this below in more detail.

Stage I: Fast individual dynamics

In this first stage, interactions are essentially irrelevant,
and the dynamics is fast. The mass of each cluster evolves
according to Section 3, independently of all the others, as
if it were isolated. The survival probability decays from
S(0) = 1 to the plateau value S(1) of (3.13), whereas the
time-dependent threshold Y (s) of (3.11) increases from
Y (0) = 0 to y� of (3.5).

Stage II: Slow collective dynamics

In this second stage, the interactions are responsible for a
slow collective dynamics in the weak-coupling regime.

The evolution throughout Stage II can be described
as follows. Starting from the assumption (to be checked
later on) that the dynamics is slow, we have γ(s) 	 1 and
M ′(s) 	 M(s). Equation (5.3) therefore simplifies to

M(s) ≈ 2α − 1
g

. (5.15)
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Now, inserting (5.10) and (5.15) in (5.11), we ob-
tain the following closed differential equation for the
unknown Y (s):

Y ′(s) ≈ 2 g2

(2α − 1)2
R(Y )2, (5.16)

where the function

R(Y ) =
∫ ∞

Y

(y0 − Y )1/2P (y0) dy0 (5.17)

is entirely determined by the initial mass distribution.
The behaviour of the threshold Y (s) throughout

Stage II is obtained by integrating (5.16), with an initial
value equal to the plateau value y� of (3.5):

∫ Y

y�

dy

R(y)2
≈ 2 g2 s

(2α − 1)2
. (5.18)

Equation (5.18) contains the key to the dynamical be-
haviour in Stage II.

First, the characteristic time of the collective
dynamics,

sc ∼ (2α − 1)2

g2 , (5.19)

becomes arbitrarily large in the weak-coupling regime
(g → 0). The assumption of slow dynamics is thus fully
justified.

Then, the analysis of the long-time dynamics goes as
follows. Note that the left-hand side of (5.18) diverges as
s → ∞. The only way this can occur is if R(Y ) falls off to
zero for long times, i.e., if the threshold Y (s) goes to the
maximum possible initial mass ymax, i.e., more formally,
the upper bound of the continuous distribution P (y0). The
survival probability S(s) then also falls off to zero for long
times. We can conclude that the whole population of clus-
ters which survived Stage I eventually disappears during
Stage II of the mean-field dynamics. For a finite mean-
field system consisting of n coupled clusters, at most one
of them will survive forever, as already mentioned at the
end of Section 4.2.

Having established the general pattern, we now spe-
cialise to specific distributions of initial masses, in order
to obtain quantitative predictions. We first consider an ex-
ponential distribution of initial masses. We will find that
the results obtainable from it can be generalised to a raft
of other distributions.

With the exponential distribution (3.14), equa-
tions (5.13), (5.18) yield

e2µY (s) =
1

S(s)2
≈ e2µy� +

π g2 s

(2α − 1)2
. (5.20)

In the late times of Stage II, the survival probability there-
fore decays as

S(s) ≈ 2α − 1
g

(Cs)−1/2, (5.21)

with
C = π (5.22)

for the chosen exponential distribution, irrespectively of α,
µ, and g, provided the latter is small enough.

Equations (5.14), (5.15) then lead to

〈〈x〉〉s ≈ (Cs)1/2. (5.23)

For a final presentation of the above results, we re-
turn to physical variables. In terms of these, the survival
probability falls off as

S(t) ≈ 2α − 1
g

(
C ln

t

t0

)−1/2

, (5.24)

whereas the mean mass of the surviving clusters grows as

〈〈m〉〉t ≈
(

C t ln
t

t0

)1/2

. (5.25)

The universality inherent in the scaling re-
sults (5.21)−(5.25) is unusual, because it includes
the prefactor C, which is itself independent of the details
of the initial distribution P (y0) of square masses. It can
indeed be checked explicitly that C only depends on the
tail exponent of this distribution in the vicinity of its
upper bound ymax:

– In the bounded case (ymax finite), assuming that
the distribution has a power-law behaviour P (y0) ≈
A(ymax − y0)a−1 for y0 → ymax, with a tail exponent
a > 0, we obtain

C = πa

(
Γ (a + 1)
Γ
(
a + 3

2

)
)2

. (5.26)

– In the unbounded case (ymax = ∞), assuming that
the distribution has a power-law behaviour P (y0) ≈
B y−b−1

0 for y0 → ∞, with a tail exponent b > 1/2, we
obtain

C = πb

(
Γ
(
b − 1

2

)
Γ (b)

)2

. (5.27)

It is worth noticing that both results (5.26) and (5.27)
smoothly converge to the particular value C = π of (5.22),
as the tail exponents a and b get large:

C = π

(
1 − 3

4a
+ · · ·

)
= π

(
1 +

3
4b

+ · · ·
)

. (5.28)

6 Finite-dimensional lattices

The mean-field regime described above can be thought of
as an infinite-dimensional limit of our model. Now, in or-
der to include the effects of fluctuations, we consider a



J.M. Luck and A. Mehta: A deterministic model of competitive cluster growth... 87

finite-dimensional lattice model. In addition to the emer-
gence of two well-separated time scales, the model now dis-
plays metastability: the system gets finally trapped forever
in a non-trivial attractor, where every surviving cluster is
isolated.

More specifically, clusters sit at the vertices n of a regu-
lar lattice. Every pair of nearest neighbours interacts with
a uniform coupling strength g. Numerical simulations have
been performed on hypercubic lattices: the chain (D = 1),
the square lattice (D = 2), and the cubic lattice (D = 3).
The coordination number of these lattices is z = 2D.
Throughout this section, initial masses are given by the
exponential distribution (3.14). Unless otherwise stated,
we set α = 1, g = 10−4, and µ such that (3.15) yields
S(1) = 0.9.

The main focus will be the limit of weak coupling
(g 	 1). We therefore simplify the dynamical equa-
tions (2.4), by keeping terms up to first order in g. The
resulting explicit equations

x′
n =

(
2α − 1

2
+ g

∑
m

(
1

xm
− αxm

))
xn − 1

xn
, (6.1)

where m runs over the z nearest neighbours of site n,
are solved numerically by means of a standard first-order
scheme.

6.1 Two-step dynamics

In the weak-coupling regime, the dynamics generated
by (6.1) again consists of two successive well-separated
stages. As before, fast individual dynamics are exhibited
in Stage I, while Stage II is the arena for slow collective
dynamics. The effects of going beyond mean field are only
palpable in the latter stage, since interactions are irrele-
vant in Stage I.

Stage I: Fast individual dynamics

There is little new here with respect to the mean-field
regime. The mass of each cluster evolves as if it were
isolated, as before. The survival probability S(s) decays
rather fast from S(0) = 1 to its plateau value S(1)

of (3.13).

Stage II: Slow collective dynamics

The slow collective dynamics throughout Stage II is now
very different from the mean-field regime. The survival
probability S(s) indeed decays from its plateau value S(1)

to a non-trivial limiting value S(∞), because of metasta-
bility, as will be shown below.

The collective dynamics throughout Stage II is very
slow in the weak-coupling regime. Consider now (6.1)

Fig. 3. Plot of the survival probability S(s) on the chain with
S(1) = 0.8. Left to right: Full line: g = 10−3. Dashed line: g =

10−4. Long-dashed line: g = 10−5. Dash-dotted line: g = 10−6.
The thick bar has length 2 ln 10 = 4.605 (see text).

for two neighbouring clusters n and m which have both
survived Stage I. The contribution of cluster m to the
large parenthesis in the right-hand side of (6.1) is pro-
portional to αgxm. In the absence of coupling, we have
xm ∼ e(2α−1)s/2, by virtue of (3.4). The characteristic
time scale of Stage II is reached when the product gxm

becomes of order unity. It reads therefore

sc ≈ 2
2α − 1

ln
1
g
, (6.2)

i.e.,
tc ∼ t0 g−2/(2α−1). (6.3)

The separation of time scales between the fast individ-
ual and the slow collective dynamics is therefore again
parametrically large in the weak-coupling limit, although
the divergence of the collective time scale is much less
pronounced than in the mean-field limit [see (5.19)]. The
glassiness of the dynamics, with its manifest two-step re-
laxation, is illustrated in Figure 3. This figure shows a
plot of the decay of the survival probability S(s) in one
dimension. The dynamical equations (6.1) have been inte-
grated numerically for a chain of 106 clusters, until every
surviving cluster is isolated (see below). Both stages of
the dynamics appear clearly on the plot, as well as the
expected plateau value S(1) = 0.8, and the occurrence
of a non-trivial limit survival probability S(∞) ≈ 0.4134.
Each curve corresponds to an interaction strength g a
decade apart from its neighbour. It is accordingly shifted
by 2 ln 10 (thick bar), in accord with the estimate (6.2).

At the end of Stage II of the dynamics, i.e., in practice
after a very long time, the system is left in a non-trivial
attractor, which consists in a pattern where each cluster is
isolated: all its first neighbours are dead, and is therefore a
survivor: it survives and keeps growing forever. In the fol-
lowing, we shall call these attractors metastable states, in
analogy with a variety of statistical-mechanical systems,
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where metastable states have been identified under various
names in different contexts: valleys [5], pure states [6,7],
inherent structures [8], quasi-states [9]. The common fea-
ture of metastable states in all these situations is that
their number N generically grows exponentially with the
system size (number of sites) N :

N ∼ exp(NΣ). (6.4)

The quantity Σ is usually referred to as the configura-
tional entropy, or complexity.

The rest of this section is devoted to various charac-
teristics of these attractors, such as their density (equal
to the limit survival probability), spatial patterns, spatial
correlations, and mass distribution of survivors.

6.2 Limit survival probability

The limit survival probability S(∞), already emphasised in
Figure 3, is just the density of a typical attractor, i.e., the
fraction of the initial clusters which survive forever and
take part in the attractor. The limit survival probability
obeys the inequalities

S(∞) ≤ S(1), S(∞) ≤ 1/2. (6.5)

The first inequality expresses that clusters can only dis-
appear: the difference 1 − S(1) (resp. S(1) − S(∞)) is
the fraction of clusters which die out during Stage I
(resp. Stage II). The second inequality is a consequence
of the fact that each surviving cluster is isolated. The
densest configuration of lattice sites obeying this condi-
tion consists in occupying all the sites of either of the two
sublattices, whose density is exactly 1/2. This value 1/2
of the highest density holds for the large family of so-
called bipartite lattices, which includes hypercubic lattices
(chain, square lattice, cubic lattice, ...). It is, however, not
universal, and would e.g. be only 1/3 for the triangular
lattice.

In a given class of initial mass distributions, the limit
survival probability S(∞) is a monotonically increasing
function of the plateau value S(1), starting from S(∞) = 0
for S(1) = 0, and going to a non-trivial maximum value
S(∞)max < 1/2 in the S(1) → 1 limit.

In the regime where S(1) is small, it can be shown
that S(∞) is also small, and that it depends on S(1) alone.
To do so, let us introduce the concept of supercluster. In
analogy with a percolation cluster, a supercluster is de-
fined as a set of k ≥ 1 connected clusters which have
survived Stage I, and such that all their neighbours have
disappeared during Stage I. The fate of superclusters de-
pends on their size k as follows.

	 k = 1: If a supercluster consists of a single isolated
cluster, it evolves in Stage II according to the dynamics
of Section 3: it is a survivor, because its reduced square
mass exceeds the threshold y� of (3.5). For independent
of initial masses, a supercluster with k = 1 occurs with
density p1 = S(1)(1 − S(1))2D.

Fig. 4. Plot of the limit survival probability S(∞) against the

plateau survival probability S(1). Top to bottom: one dimen-
sion (circles), two dimensions (squares), three dimensions (tri-
angles). Full lines (hardly visible through symbols): rational fits

based on [2/2] Padé approximants incorporating both terms of
the expansion (6.6).

	 k = 2: If a supercluster consists of a pair of neighbour-
ing clusters (represented as ••) both clusters evolve
according to the dynamics of Section 4.2: the smaller
dies out, while the larger is a survivor. We are thus
left with •◦ or ◦• in the late stages of the dynam-
ics. Such an event takes place with density p2 =
S2

(1)(1 − S(1))2(2D−1).
	 k ≥ 3: If three or more surviving clusters form a su-

percluster, they may a priori have more than one pos-
sible fate. Consider for instance a linear supercluster
of three clusters (•••). If the middle one disappears
first (•◦•), the two end ones are isolated, and both
will be survivors. If one of the end ones disappears
first (e.g. ••◦), the other two form an interacting pair,
and only the larger of those two will survive forever
(e.g. •◦◦). The pattern of the survivors, and even their
number, therefore cannot be predicted a priori.

The above enumeration implies S(∞) = p1 + p2/2 +
· · · , where the dots stand for the unknown contribution of
superclusters with k ≥ 3. As p1 ∼ S(1), p2 ∼ S2

(1), and so
on, we are left with the expansion

S(∞) = S(1) − D S2
(1) + · · · (6.6)

The dependence of S(∞) on details of the initial mass dis-
tribution at fixed S(1) therefore only appears at order S3

(1).
In the converse limit S(1) → 1, the limit survival prob-

ability reaches a non-trivial maximum value S(∞)max <
1/2, which depends very weakly on the mass distribution.
For instance, in one dimension one has S(∞)max ≈ 0.441
for an exponential distribution and S(∞)max ≈ 0.446 for
a uniform distribution. Figure 4 shows a plot of the limit
survival probability S(∞) (fraction of clusters that survive
both fast and slow dynamics) against the plateau survival
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probability S(1) (fraction of clusters that survive the fast
dynamics of Stage I), for an exponential mass distribution
in one, two, and three dimensions.

6.3 Spatial patterns of attractors

We have seen already that the system generically ends up
trapped in an attractor, or metastable state, where each
cluster is isolated, i.e., surrounded by empty sites, and
therefore grows forever. The spatial patterns generated
by survivors are therefore absolutely fixed once they are
created by the dynamics.

We now turn to a descriptive investigation of these
patterns. One of our main rationales for this exploration
of spatial patterns derives from the cosmological model
which was at the origin of the present model [3]. In that
context, it was of interest to obtain both the mass distri-
bution of black holes and their spatial pattern.

For ease of visualisation, we consider a square lattice.
In the limit of highest density (S(∞) = 1/2), there are only
two possible ‘ground-state’ configurations of the system:
one where the first sublattice is full of survivors, while the
second is empty, and vice-versa. In this limit, patterns of
surviving clusters are therefore perfect checkerboards.

In order to describe the patterns of attractors, we are
led to introduce at every site n, with integer co-ordinates
(n1, n2, . . . , nD), both the survival index

σn =
{

1 if the cluster at site n is a survivor,
0 else, (6.7)

and the checkerboard index

φn = (−1)σn+n1+···+nD . (6.8)

The survival index depicts very simply the pattern of sur-
viving clusters surrounded by empty sites. The checker-
board index, on the other hand, represents, for each
site, the local choice of one of the two symmetry-related
‘ground states’, i.e., of one of the two sublattices. This
is easiest to understand using a one-dimensional exam-
ple: the two ground states are +−+−+ · · · or −+−+− · · ·
All the φn are equal to −1 in the first pattern, and equal
to +1 in the second pattern. The checkerboard index φn

thus classifies each site according to the particular ground
state selected locally at this site.

If the initial masses are large enough, so that the
plateau survival probability S(1) after Stage I is close to
unity, the limit survival probability S(∞) is not far from
its ‘ideal’ highest value of 1/2. In this regime, attractors
clearly exhibit a local checkerboard structure, as well as
frozen-in defects with respect to a perfect checkerboard.
The random structure of defects is entirely inherited from
the random distribution of initial masses, because the dy-
namics is deterministic.

Figure 5 shows a map of the survival index and of the
checkerboard index for the same attractor of a 1502 sam-
ple of the square lattice. This attractor has a density

Fig. 5. Two complementary representations of a typical pat-

tern of surviving clusters on the square lattice, with S(1) = 0.9,
so that S(∞) ≈ 0.371. Left: Map of the survival index. Black
(resp. white) squares represent σn = 1 (resp. σn = 0), i.e., sur-
viving (resp. dead) sites. Right: Map of the checkerboard index.

Black (resp. white) squares represent φn = +1 (resp. φn = −1).
Top panels show a 1502 sample. Bottom panels show an en-
largement of a 402 region near the centre of the sample.

S(∞) ≈ 0.371. For greater clarity, we also zoom into a
part of size 402, in order to show better the correspon-
dence between patterns of the survival and checkerboard
indices. The frozen-in defects cause what appear to be
little rivulets of voids which surround patches of perfect
checkerboard. These islands of checkerboard are repre-
sented by black or white patches in the lower right-hand
figure, depending on their parity, which is clearly visible
from a comparison of the two figures.

6.4 Spatial correlations

The main consequence of short-range interactions is the
generation of correlations between clusters. In our model,
a study of such correlations is especially meaningful in
the long-time limit, when all the clusters which are still
present are in fact survivors. In this regime, neighbour-
ing sites are fully anticorrelated, because each survivor is
surrounded by voids. However, at least close to the limit
S(∞) = 1/2, the next-nearest neighbours of a surviving
cluster are expected to contain another survivor with high
probability. Also, most survivors at late times should be
quite massive, as they have both survived Stage I and then
Stage II. We may thus expect that survival and mass cor-
relations exhibit a rather similar dependence on the dis-
tance. These expectations are borne out by the following
detailed study of correlation functions.
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Fig. 6. Plot of the correlation functions against the distance n

along the chain. Empty symbols: correlation Cσ(n) of the sur-
vival index. Full symbols: correlation Cx(n) of the reduced
mass.

Let us introduce the two-point correlation functions of
the survival index and of the reduced mass at separation n:

Cσ(n) =
〈σ0σn〉
S(∞)

, Cx(n) =
〈x0xn〉
〈x2〉 , (6.9)

where 〈. . . 〉 stands for a normalised ensemble average at
a very late stage of the dynamics. These correlations are
normalised so as to have Cσ(0) = Cx(0) = 1, whereas
Cσ(e) = Cx(e) = 0, where e is any unit vector of the
lattice. Their disconnected parts read

Cσ(∞) = lim
|n|→∞

Cσ(n) = S(∞),

Cx(∞) = lim
|n|→∞

Cx(n) =
〈x〉2
〈x2〉 . (6.10)

It is worth noticing that the correlations of the checker-
board index are not independent of those of the survival
index. We have indeed:

〈φ0φn〉 = (−1)n1+···+nD(4S(∞)Cσ(n)−4S(∞)+1). (6.11)

The existence of such an identity is quite natural, although
it may seem surprising at first sight. Indeed the checker-
board index is only a different bookkeeping method for
the same data on the positions of the survivors.

Figure 6 shows a plot of the correlation func-
tions Cσ(n) and Cx(n) against distance, in one dimension.
Both correlation functions exhibit a fast oscillatory
convergence toward their disconnected parts. Similar
features are observed for the on-axis correlations Cσ(ne)
and Cx(ne) on the square and cubic lattices. Figure 7
shows a plot of the logarithm of the absolute on-axis
connected correlations Cc

σ(ne) = Cσ(ne) − Cσ(∞) and
Cc

x(ne) = Cx(ne)−Cx(∞), against distance, in one, two,
and three dimensions. The connected correlations are ob-
served to fall off very fast to zero, so fast that it is hard to
fit the precise form of their asymptotic decay. Neither a

Fig. 7. Logarithmic plot of the absolute connected on-axis
correlation functions, against distance n. Upper panel: sur-
vival correlation. Lower panel: mass correlation. Top to bot-
tom: one dimension (circles), two dimensions (squares), three

dimensions (triangles).

conventional exponential fall-off nor a more exotic super-
exponential behaviour can be ruled out from the available
data. A more accurate investigation of this point will form
the subject of future investigations. It is worth recalling
that, in the context of zero-temperature dynamics of Ising
spin chains, the super-exponential fall-off of correlations
in metastable states has been emphasised as a signature
of the generation of a non-trivial measure on the space of
attractors [10], i.e., loosely speaking, of the violation of
Edwards’ flatness hypothesis [11].

6.5 Mass distribution of survivors

To conclude this section, we examine the mass distribution
of the survivors. In the late stages of the dynamics, when
every cluster is isolated, its reduced mass grows accord-
ing to Section 3, i.e., x ∼ e(2α−1)s/2. The mean reduced
mass 〈〈x〉〉 of the surviving clusters therefore exactly fol-
lows the same growth law. Hence it is natural to measure
cluster masses with respect to their mean, and to intro-
duce the ratios

Xn =
xn

〈〈x〉〉 =
mn

〈〈m〉〉 . (6.12)
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Fig. 8. Plot of the limit distribution P(∞)(X) of the rescaled
mass X of surviving clusters. Circles: one dimension. Squares:
two dimensions. Triangles: three dimensions.

All the rescaled variables Xn are independent of time in
the very late stages of the dynamics. They are therefore
expected to have a well-defined limit probability distri-
bution P(∞)(X). The first moment of this distribution is
identically 〈〈X〉〉 = 1, whereas (6.10) implies

〈〈X2〉〉 =
〈〈x2〉〉
〈〈x〉〉2 = S(∞)

〈x2〉
〈x〉2 =

Cσ(∞)
Cx(∞)

. (6.13)

We have measured the values 〈〈X2〉〉 ≈ 1.73, 〈〈X2〉〉 ≈ 1.93,
and 〈〈X2〉〉 ≈ 2.10, respectively in one, two, and three
dimensions. Figure 8 shows a plot of the whole rescaled
distribution P(∞)(X) of the masses of survivors in these
three cases. This distribution is observed to be both rather
structureless and weakly dependent on dimensionality.

The cosmological origins of the present model were
our main motivation for looking at the mass distribution
of survivors. In that context, survivors would be the de-
scendants of primordial black holes, which would form
part of the dark matter in the Universe. The above re-
sults suggest that the population of survivors is essentially
given by a single mass scale, growing as the mass of a
single isolated cluster, whereas the superimposed cluster-
to-cluster fluctuations are described by the harmless dis-
tribution P(∞)(X). This qualitative picture clearly ignores
any cosmological details, but may still be of general in-
terest from the viewpoint of using statistical-mechanical
methods to probe such issues.

7 Discussion

In the above we have presented and investigated in detail
the many facets of a novel and very rich model at the in-
terface between non-linear dynamics and non-equilibrium
statistical mechanics. Despite its origins in a rather exotic
context, namely accretion dynamics of black holes in a
brane world [2,3], the present model is of potential inter-
est in many other situations, at least as far as qualitative
features are concerned.

As recalled in the beginning of the Introduction, the
premise of equilibration generally holds in most physi-
cal instances. The rare exceptions to this principle in-
clude classical systems with long-range forces, with the
noticeable example of the large-scale structure of the Uni-
verse. Similar instabilities, where tiny initial differences
get amplified forever, are also met in other sciences, with
one well-known example being the rich-get-richer princi-
ple in economics [12]. It has been realised more recently
that non-equilibrium statistical-mechanical models may
exhibit a similar phenomenon, where a single microscopic
state acquires a large population by virtue of a condensa-
tion transition, even in one dimension. The appearance of
such a condensate can be viewed as a classical and non-
equilibrium analogue of Bose-Einstein condensation [13].
The scenario of survival of the biggest arising from our
model can be viewed as an extreme example of this insta-
bility, where the condensate ends up containing the entire
mass. We reiterate that the model is non-conserving, in
the sense that the final cluster becomes eventually more
massive than all the earlier ones put together. The physi-
cal reason for this is that the interaction term derives from
a radiation field in its cosmological incarnation [3], which
can be regarded as a mass reservoir.

The present model also has many other specific fea-
tures of interest in each of the geometries considered; we
address each one in turn.

First, for a finite assembly of coupled clusters, the
model provides an interesting example of a deterministic
dynamical system describing the evolution of competing
agents. This class of problems has been studied at length
in biophysics, one particularly well-known example being
the Lotka-Volterra system in population dynamics as de-
scribed by predator-prey models [14]. The present model
exhibits a whole variety of types of trajectories in the tran-
sient regime, encoded in Phases I to IV of the phase dia-
gram shown in Figure 1. Another distinguishing feature of
our model is that only one survivor remains after a suffi-
ciently long time, leading to the description of this model
as a winner-takes-all type of model, despite the lack of a
conservation law.

Next, the thermodynamical mean-field limit of our
model clearly shows many features of glassy behaviour.
The evolution consists of two successive stages: a fast in-
dividual dynamics in Stage I, followed by a slow collective
dynamics in Stage II. In the weak-coupling regime, the
characteristic reduced time scale sc of the slow dynamics
diverges as 1/g2 [see (5.19)]; the two time scales are well-
separated in a way which is very reminiscent of the α and
β relaxations observed in most glassy systems [4]. A par-
ticularly interesting feature in this context is the univer-
sality of Stage II asymptotics, such as (5.24) or (5.25), and
the more unusual universality of the prefactor C, which
only depends on the tail exponent of the initial mass distri-
bution. A further distinguishing characteristic is that the
time separation between fast and slow dynamics in our
model is simply given in terms of the coupling constant,



92 The European Physical Journal B

and becomes parametrically large in the weak-coupling
regime; this is true both within and beyond mean-field
theory [see respectively (5.19) and (6.2)]. In most con-
ventional glassy systems, the separation of time scales is
governed by the appearance of a slowly growing length
scale L(t), associated with some kind of ordering. By con-
trast, the glassiness in the present situation has dynam-
ical origins: our model has features that are similar to
driven systems, where time-scale separation arises either
from a non-zero drift velocity V [15] or a non-zero shear
rate γ [16]. Such time-scale separations become paramet-
rically large with the divergence (as V → 0 or γ → 0 for
those models, and as g → 0 in the present case) of the
slow time scale.

Beyond mean-field, e.g. on finite-dimensional lattices
with nearest-neighbour couplings, the principle of survival
of the biggest only applies locally; thus isolated clusters of
dissimilar sizes are able to survive independently. At least
qualitatively, this recalls local screening mechanisms in a
variety of growth models, including cluster aggregation in
suspensions [17]. In our model, however, the screening is
extreme, in the sense that growing clusters, once isolated,
are survivors, i.e., survive and keep on growing forever.
A direct consequence of this is that the model exhibits
both aging and metastability in a way that is qualita-
tively similar to what is observed in the mean-field limit,
even though the time scale of the slow stage of the dy-
namics diverges less rapidly in the weak-coupling regime.
Furthermore, the aging phase gets interrupted, as the sys-
tem gets eventually trapped in a metastable state where
a finite fraction S(∞) of the entire lattice is occupied by
isolated clusters which survive forever. If the clusters are
initially large enough, the density S(∞) is only slightly be-
low 1/2, so that the spatial pattern of survivors has a local
checkerboard structure. While similar checkerboard pat-
terns have been observed in coupled map lattices [18,19],
our attractors are distinguished by their absolute stability:
they are created irreversibly by a deterministic dynamics
from the fluctuations in the initial distribution of their ini-
tial masses. Once created, they then survive forever. Many
questions regarding the statistics of the metastable states
thus obtained remain open. It would be most interesting
to know whether they are generated with a uniform mea-
sure à la Edwards [11] in an appropriately defined ensem-
ble, or with a highly non-trivial one, as suggested by recent
investigations of one-dimensional spin models [10,20].

It is a pleasure to thank Archan Majumdar for fruitful discus-

sions, and Hugues Chaté for valuable comments, and especially
for making us aware of references [18,19].
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